

Subject Module Department of Agrotechnology Faculty of Agriculture University of Islam Malang

Module Handbook

Module Title	Soil and Crop Management
Module Level, if available	Undergraduate Study Program of Agrotechnology
Subject Code	MKW 60626
Headings, if available	-
Subject (MK)	Soil and Crop Management
Semester	3
Subject Coordinator	Dr. Ir. Nurhidayati, MP.
Teaching Team	-
Language of instruction	Indonesian language/English
Linkages with the Curriculum	Study Program : Agrotechnology
	Specialization:
	Agrotechnology
	Type: Compulsory/ elective
Learning Methods and	1. Lecture: 100 minutes/meeting (14 meetings)
Duration	2. Research Based Learning through Practicum greenhouse
	experiment : 170 minutes/meeting (8 meetings)
	3. Structured Assignments/individual and group Assigments
	presentation
Student Study Load	1. Lecture: 100 minutes/meeting (14 meetings)
	2. Practicum: 1/0 minutes/meeting (8 meetings)
	3. Structured Assignments/qui2/group presentation
Cradit Waight	3 credits or 5.1 ECTS
Doquiromonts for Passing the	Attendance > 7E0/
Carbin et	• Attendance >/ 5%
Subject	• The final score of all the components of the learning
	evaluation >44
	The final score component:
	• 20% Midterm Exam
	• 20% Final Exam
	• 30% Practicum
	• 20% Structured Assignments (individual and group)
	 10% Presence
Prerequisite Subjects	Basic Soil Science
Learning Outcomes	The expected learning outcomes are:
	1. Have an attitude of creative and innovative thinking in their
	work in accordance with professional ethics in the field of
	agriculture (ILO 1)
	2. Able to solve problems that arise in the field of
	agrotechnology and related fields of science (ILO 5)
	3. Able to apply agricultural practices based on <i>Good</i>
	Agricultural Practices (ILO 8)
	4. Able to manage crop production systems (ILO 9)

	5. Able to work independently or in a team, and use various
	methods of communication (ILO 4)
Learning Content	After completing this Subject students are able to:
	1. assess soil performance as a growing medium in crop
	production systems
	2. identify soil management problems found in the field and determine solutions to solve the problems
	3. apply soil management strategies to various types of soil
	for an effective crop production system
	4. recommend the best management practices in crop
	production systems to consider aspects of ecology
	The topics include:
	1. Introduction
	 Definition of soil and crop management
	• The importance of soil and crop management in crop
	production system
	• Several indicators of soil properties that are important in
	soil management
	2. How uses soil work as a growing meanum for plants and indicators that can be used to assess soil performance
	• Soil mornhological and physical characteristics that
	determine soil performance
	• Indicators used to assess soil performance
	• Development of soil structure and its problems in the field
	 Nutrient cycles and its problems in the field
	 Water cycle and its problems in the field
	• Life cycle and its problems in the field
	3. The problem of soil degradation in agricultural land and
	Its causes • Various physical damage to the soil
	• Various physical damage to the soli
	Various biological soil damage
	• Causes of soil damage
	4. Soil management practices that improve soil
	performance
	• Addition of organic matter to cropland impacts on soil
	performance
	• Soli tillage and nutrient application and their impact on crop
	5. Soil management and soil tillage
	• Impact of conventional tillage on soil physical condition
	• Tillage systems that reduce soil compaction (No-Till, Strip-
	Till, Ridge-Till, Mulch-Till Vs. Conventional Tillage)
	6. Soil management practices to reduce erosion and
	improve soil quality
	• Types of soll erosion
	Benefits of conservation tillage in crop production systems
	7. Soil and Nutrient Management
	• Effect of soil pH on plant fertilizer requirements
	• Soil pH improvement management
	• Determine fertilizer requirements based on soil nutrient
	status
	8. Cover crop management to increase crop productivity
	• The purpose of using the cover crop.
	Use of cover crop for erosion control

	Use of cover crop to improve soil quality
	• Use of plant and animal residues to increase crop
	production
	9. Integrated Crop Management
	• Concepts and definitions of integrated crop management
	• The main components of integrated crop management
	which include Integrated Nutrient Management Integrated
	Pest Management Integrated Desease Management
	Integrated Weed Management
	• Stratogy for Integrated gron management
	• Strategy for integrated crop management
	10. Effective and efficient son and crop management
	• Nutrient management from organic fer thizers
	• Application of non-conventional soft amenument for
	Effective and efficient nutrient management
	• Effect of compost and vermicompost on soil quality and
	crop production
	11. Plant and fertilizer management practices to reduce
	nitrate leaching
	Soil and water factors that enhance leaching
	• What to do for soils with high leaching potential
	N fertilizer management to improve synchronization
	between nutrient requirements and nutrient N release
	12. Types of planting systems
	• Crop rotation
	• Strip cropping
	Intercropping
	 Planting along contour (Contour cropping, alley cropping)
	13. Integrated pest and plant disease management
	 Organic management methods for pest control
	 Organic management for disease control
	 Companion planting management for pest and diseases
	control
	14. Best Management Practices (BMPs)
	• The importance of BMPs to reduce soil and nutrient losses
	• BMPs for an effective and efficient crop production system
Test Terms and Forms	Examination requirements: A minimum of 75 % attendance to
	attend the final exam
	Forms of examination:
	Essay
Learning Media	Projector and screen, Zoom application, Google Classroom, e-
	book, WA Group, Practical guide book, soil and plant samples for
	research-based learning
References	Main References :
	1) Koç Mehmet Tuğrul. 2019. Soil Management in Sustainable.
	Book Chapter of Agriculture Sustainable Crop Production.
	Book Department. Intechopen.com. DOI:
	http://dx.doi.org/10.5772/intechopen.88319
	2) Ann Lewandowski. 2015. Soil Management. Soil Quality
	Institute, Natural Resources Conservation Service, United
	States Department of Agriculture Soil Management
	Minnesota Institute for Sustainable Agriculture
	misamail@tc.umn.edu http://www.misa.umn.edu.
	3) Sam D. Angima and Thomas A. Terry. 2011. Best Management
	Practices for Maintaining Soil Productivity in the Douglas-fir
	Region Archival copy. For current information, see the OSU
	Extension Catalog:

 <u>https://catalog.extension.oregonstate.edu/em9023</u> 4) Robertson, G.A. 2001. Soil <i>Management for Sustainable Agriculture</i>. Resource Management Technical Report No.95. Department of Agriculture Western Australia 2001 5) Hugh M. Coxe and Mark F. Hedrich. 2007. Manual of Best Management Practices For Maine Agriculture. Maine Department of Agriculture, Food & Rural Resources. Division of Animal Health & Industry.
 Supporting References : 1) Omar A. Abdi, Edinam K. Glover, Olavi Luukkanen. 2013. Causes and Impacts of Land Degradation and Desertification: Case Study of the Sudan. International Journal of Agriculture and Forestry, 3(2): 40-51.
 Ann Verdoodt. 2012.Soil Degradation. Compilation of Subject notes. Faculty of Bioscience Engineering. Universiteit Gent.
3) Rutgers, 2016. Soil and Nutrient Management. The State University of New Jersey, U.S. Department of Agriculture.
 A) Richard Ogoshi, Vethaiya Balasubramanian, Michael Jones.2007. Integrated crop management (ICM). The United States Agency for International Development (USAID) 5) Amir Kassam, Gottlieb Basch, Theodor Friedrich, Francis Shaxson, Tom Goddard, Telmo J. C. Amado, Bill Crabtree, Li Hongwen, Ivo Mello, Michele Pisante, and Saidi Mkomw. 2010. Sustainable Soil Management Is More than What and How Crops Are Grown. Book Chapter of Principles of Sustainable Soil Management in Agroecosystems. 6) Team of LSUAg Center. 2010. Environmental Best Management Practices for Agronomic Crops. LSUAg Center. Research and Extention. LSU AgCenter pub. 2805 7) Ross H. McKenzie. 2010. Crops and cropping systems In Conservation Agriculture. Alberta Agriculture and Rural Development Lethbridge. Alberta. October 2010 Agdex 510-
 Website: www. agriculture.alberta.ca. Marcello Pagliai. 2010. SOIL CRUSTING. Istituto Sperimentale per lo Studio e la Difesa del Suolo, MiPAF.
 Piazza D'Azeglio 30, 50121 Firenze (Italy). 9) F. William Simmons and Emerson D. Nafziger 2015. Soil Management and Tillage. <i>Illinois Agronomy Handbook</i>. 10) Krishna R. Tiwari, Bishal K. Sitaula, Roshan M. Bajracharya, Trond Børresen. 2019. Effects of soil and crop management practices on yields, income and nutrients losses from upland farming systems in the Middle Mountains region of Nepal. Nutr Cycl Agroecosyst. DOI 10.1007/s10705-009-9289-0
 Anonymous. 2010. Important of crop rotation. Agronomic Spotlight. Seminis Grow Forward. Vijay Pooniya, Anil K Choudhary, Anchal Dass, R S Bana, K S Rana5, D S Rana, V K Tyagi And M M Puniya. 2015. Improved crop management practices for sustainable pulse production: An Indian perspective (Review Article). <i>Indian</i>
Journal of Agricultural Sciences 85 (6): 747–58. 13) Farooq Shah and Wei Wu. 2019. Review Soil and Crop Management Strategies to Ensure Higher Crop Productivity within Sustainable Environments. Sustainability 2019, 11, 1485: doi:10.3390/su11051485.

14) Kavita Rani, Pankaj Sharma, Sandeep Kumar, Leela Wati,
Rakesh Kumar, Dhara Singh Gurjar, Dileep Kumar, and
Rakesh Kumar. 2019. Legumes for Sustainable Soil and Crop
Management. Springer Nature Singapore Pte Ltd. 2019 193.
R. S. Meena et al. (eds.), Sustainable Management of Soil and
Environment, <u>https://doi.org/10.1007/978-981-13-8832-</u>
<u>36</u> .
15) Stephen Nutsugah. 2015. Developing Resilient Farming
Systems in Northern Ghana. CSIR-Savanna Agricultural
Research Institute.
16) Randall Reeder. 2006. Soil Management Practices to Reduce
Erosion and ImproveSoil Quality. Managing Agricultural
Landscapes for Environmental Quality Conference. Ohio
State University Columbus, Ohio